
Towards Ruby3x3 Performance
Introducing RTL and MJIT

Vladimir Makarov

Red Hat

September 21, 2017

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 1 / 30

About Myself

Red Hat, Toronto office, Canada

Tools group (GCC, Glibc, LLVM, Rust, Go, OpenMP)
I part of a bigger platform enablement team (porting

Linux kernel to new hardware)

20 years of work on GCC

2 years of work on MRI

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 2 / 30

Ruby 3 performance goal

Matz set a very ambitious goal: MRI 3 should be 3x faster than MRI
2

I Koichi Sasada improved MRI performance by about 3x
I It is symbolic to expect MRI 3 should be 3x faster than MRI 2

Doable for CPU intensive programs

Hardly possible for memory or IO bound programs

I treat Matz’s performance goal as: MRI needs another cardinal
performance improvement

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 3 / 30

RTL insns

IR for Ruby code analysis, optimizations, and JIT
I Importance of easy data dependence discovery
I Stack based insns are an inconvenient IR for such goals

Stack insns vs RTL insns for Ruby code a = b + c:

getlocal_OP__WC__0 <b index>

getlocal_OP__WC__0 <c index>

opt_plus

setlocal_OP__WC__0 <a index>

plus <a index>, <b index>, <c index>

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 4 / 30

Using RTL insns for interpretation

RTL for analysis and JIT code generation

RTL or stack insns for interpretation?

Feature Stack insns RTL insns

Insn length shorter longer
Insn number more less
Code length less more
Insn decoding less more
Code data locality more less
Insn dispatching more less
Memory traffic more less

Instructions: Pros & Cons for interpretation

Decision: Use RTL for the interpreter too
I Allows sharing code between the interpreter and JIT

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 5 / 30

How to generate RTL

A simpler way is to generate RTL insns from the stack insns

A faster approach is to generate directly from MRI parse tree nodes

Decision: generate RTL directly from MRI nodes

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 6 / 30

RTL insn operands

What could be an operand:
I only temporaries
I temporaries and locals
I temporaries and locals even from higher levels (outside Ruby block)
I the above + instance variables
I the above + class variables, globals

Decoding overhead of numerous type operands will not be
compensated by processing smaller number of insns

Complicated operands also complicate optimizations and JIT

Currently we use only temporaries and locals. This gives best
performance results according to my experiments

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 7 / 30

RTL complications

Practically any RTL insn might be an ISEQ call. A call always puts a
result on the stack top. We need to move this result to a destination
operand:

I If an RTL insn is actually a call, change the return PC so the next insn
executed after the call will be an insn moving the result from the stack
top to the insn destination

I To decrease memory overhead, the move insn is a part of the original
insn

I For example, if the following insn
plus <move opcode>, <call data>, dst, op1, op2

is a method call, the next executed insn will be
<move opcode> <call data>, dst, op1, op2

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 8 / 30

RTL insn combining and specialization

Immediate value specialization
I e.g. plus − > plusi - addition with immediate fixnum as an operand

Frequent insn sequence combining
I e.g. eq + bt − > bteq - comparison and branch if the operands are

equal

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 9 / 30

Speculative insn generation

Some initially generated insns can be transformed into speculative
ones during their execution

I Speculation is based on operand types (e.g. plus can be transformed
into an integer plus) and on the operand values (e.g. no
multi-precision integers)

Speculative insns can be transformed into unchanging regular insns
if the speculation is wrong

I Speculation insns include code checking the speculation correctness

plus

iplus

uplus

fplus

Speculation will be more important for JITted code performance
I It creates a lot of big extended basic blocks which a C compiler

optimizes well

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 10 / 30

RTL insn status and future work

It mostly works (make check reports no regressions)

Slightly better performance than stack based insns
I 27% GeoMean improvement on 23 small benchmarks (+110% to -7%)
I Code Change (Optcarrot):

Stack insns → RTL insns
Executed insns number -23%
Executed insn length +19%

Still some work to do for RTL improvement:
I Reducing code size
I Reducing overhead in operand decoding

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 11 / 30

Possible JIT approaches

1. Writing own JIT from scratch
I LuaJIT, JavaScript V8, etc

2. Using widely used optimizing compilers
I GCC, LLVM

3. Using existing JITs
I JVM, OMR, RPython, Graal/Truffle, etc.

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 12 / 30

Option 1: Writing own JIT from scratch

Full control, small size, fast compilation

Fast compilation is mostly a result of fewer optimizations than in
industrial optimizing compilers

Still a huge effort to implement decent optimizations

Ongoing burden in maintenance and porting

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 13 / 30

Option 2: Using widely used optimizing compilers

Highly optimized code (GCC has > 300 optimization passes), easier
implementation and porting and extremely well maintained (> 2K
contributors since GCC 2.95)

Portable (currently supports 49 targets)

Reliable and well tested (> 16K reporters since GCC 2.95)

No new dependencies

But slower compilation
I Slower mostly because it does much more than a typical JIT
I Compilation can be made faster by disabling less valuable optimizations

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 14 / 30

Option 3: Using existing JITs

Duplication: already used for JRuby, Topaz (Rpython), Opal (JS),
OMR Ruby, Graal/Truffle Ruby

JVM is stable, reliable, optimizing, and ubiquitous

But still worse code performance than GCC/JIT
I Azul Falcon (LLVM based JIT) up to 8x better performance than JVM

C2 (source: http://stuff-gil-says.blogspot.ca/2017)

License issues and patent minefield

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 15 / 30

http://stuff-gil-says.blogspot.ca/2017

Own or existing JITs vs GCC/LLVM based JITs

Webkit moved from LLVM JIT to own JIT (source:
https://webkit.org/blog/5852/introducing-the-b3-jit-compiler)

I Implemented about 20 optimizations
I 4-5 speedup in compilation time
I Final results: Jetstream, Kraken, Octane (-9% to +8%)

ISP RAS research: JS V8 ported to LLVM (source
http://llvm.org/devmtg/2016-09/slides/Melnik-LLV8.pdf)

I GeoMean speedup 8-16% on Sunspider

Resulting situation: is the glass half full or half empty?
I In my opinion, considering implementation and maintenance efforts,

GCC/LLVM JIT is a winner, especially for long running server programs

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 16 / 30

https://webkit.org/blog/5852/introducing-the-b3-jit-compiler
http://llvm.org/devmtg/2016-09/slides/Melnik-LLV8.pdf

How to use GCC/LLVM for implementing JITs

Using LibGCCJIT/MCJIT/ORC:
I New, unstable interfaces
I A lot of tedious calls to create the environment (see GNU Octave and

PyPy port to libgccjit)

Generating C code:
I No dependency on a particular compiler, easier debugging
I But some people call it a heavy, “junky” approach

F Wrong! if we implement it carefully

LibGCCJIT vs GCC data flow (red parts are different):

Environment creation

through API calls

C header parsing

(emvironment)

C function parsing Optimizations

and Generation

Optimizations

and Generation

Assembler/LD

Assembler/LD Loading .so file

Loading .so fileFunction creation

through API calls

GCC

LibGCCJIT

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 17 / 30

How to use GCC/LLVM for implementing JITs – cont’d
Generating C code

I Environment takes from 21% to 41% of all compilation time
I Using a precompiled header (PCH) decreases this to less than 3.5%
I Function parsing takes less than 1%

 0

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

Header Minimized_Header PCH Minimized_PCH

 G
C

C
 t

h
o
u

sa
n
d

 i
n

sn
s

GCC −O2 processing a function with 44 RTL insns

Environment

Function Parsing

Optimizations & Generation

I GCC with C executable size: 25.1 MB for cc1 vs. 22.6MB for libgccjit
(only 10% difference)

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 18 / 30

MJIT

MJIT is MRI JIT

MJIT is Method JIT

MJIT is a JIT based on C code generation and PCH

MJIT can use GCC or LLVM, in the future other C compilers

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 19 / 30

MJIT architecture

Environment

header

Minimized

header

MRI building phase

New MRI MJIT environment building step

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 20 / 30

MJIT architecture

Environment

header

Minimized

header

MRI building phase

MJIT

MRI execution run

MRI

Precompiled header

CC

thread

MJIT initialized in parallel with Ruby program execution

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 20 / 30

MJIT architecture

Environment

header

Minimized

header

MRI building phase

MJIT

MRI execution run

MRI

Precompiled header

CC

thread

C code .so file

CC

loading

threads

MJIT works in parallel with Ruby program execution

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 20 / 30

Example

Ruby code:
def loop

i = 0; while i < 100_000; i += 1; end

i

end

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 21 / 30

Example

Ruby code:
def loop

i = 0; while i < 100_000; i += 1; end

i

end

RTL code right after compilation:
...

0004 val2loc 3, 0

0007 goto 15

0009 plusi cont_op2, <calldata...>, 3, 3, 1

0015 btlti cont_btcmp, 9, <calldata...>, -1, 3, 100000

0022 loc_ret 3, 16

...

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 21 / 30

Example

Ruby code:
def loop

i = 0; while i < 100_000; i += 1; end

i

end

Speculative RTL code after some execution:
...

0004 val2loc 3, 0

0007 goto 15

0009 iplusi _, _, 3, 3, 1

0015 ibtlti _, 9, _, -1, 3, 100000

0022 loc_ret 3, 16

...

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 21 / 30

Example
Ruby code:

def loop

i = 0; while i < 100_000; i += 1; end

i

end

MJIT generated C code:
...

l4: cfp->pc = (void *) 0x5576729ccd88; val2loc_f(cfp, &v0, 3, 0x1);

l7: cfp->pc = (void *) 0x5576729ccd98; ruby_vm_check_ints(th); goto l15;

l9: if (iplusi_f(cfp, &v0, 3, &v0, 3, &new_insn)) {

vm_change_insn(cfp->iseq, (void *) 0x5576729ccda6, new_insn);

goto stop_spec;

}

l15: flag = ibtlti_f(cfp, &t0, -1, &v0, 200001, &val, &new_insn);

if (val == RUBY_Qundef) {

vm_change_insn(cfp->iseq, (void *) 0x5576729ccdd6, new_insn);

goto stop_spec;

}

if (flag) goto l9;

l22: cfp->pc = (void *) 0x5576729cce26;

loc_ret_f(th, cfp, &v0, 16, &val);

return val;

...

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 21 / 30

Example

Ruby code:
def loop

i = 0; while i < 100_000; i += 1; end

i

end

GCC optimized x86-64 code:
...

movl $200001, %eax

...

ret

There is no loop

JVM can not do this

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 21 / 30

MJIT performance results

Benchmarking MRI v2 (v2), MRI GCC MJIT (MJIT), MRI LLVM
MJIT (MJIT-L), OMR Ruby rev. 57163 using JIT (OMR), JRuby9k
9.1.8 (JRuby9K), JRuby9k -Xdynamic (JRuby9k-D), Graal Ruby 0.22
(Graal)

Mainstream CPU (i3-7100) under Fedora 25 with GCC-6.3 and
Clang-3.9

Microbenchmarks and small benchmarks (dir MJIT-benchmarks)
I Each benchmark runs at least 20-30sec on MRI v2

Optcarrot (https://github.com/mame/optcarrot)

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 22 / 30

https://github.com/mame/optcarrot

MJIT performance results
Microbenchmarks: Geomean Wall time improvement relative to
MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
0

1

2

3

4

5

6

7
S

p
e

e
d

u
p

 (
G

e
o

M
e

a
n

)

1.09

1.59

2.48

1.83

6.18

4.02

Wall time Speedup

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 23 / 30

MJIT performance results
Microbenchmarks: Geomean CPU time improvement relative to
MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
0

1

2

3

4

5

6
S
p
e
e
d
u
p
 (
G
e
o
M
e
a
n

)

1.09
1.33

1.88

0.69

5.55

3.67

CPU time Speedup

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 24 / 30

MJIT performance results
Microbenchmarks: Geomean Peak memory overhead relative to
MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
10-1

100

101

102

103

P
e
a
k
m
e
m
o
ry
 (
G
e
o
M
e
a
n
)

2.54

161.76
198.86

79.65

4.15
6.44

Peak memory overhead

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 25 / 30

MJIT performance results
Optcarrot: FPS speedup relative to MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
S
p
e
e
d
u
p

1.20 1.14

2.38

2.83
2.94

FPS improvement

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 26 / 30

MJIT performance results
Optcarrot: CPU time improvement relative to MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
0.0

0.5

1.0

1.5

2.0
S
p
e
e
d
u
p 1.13

0.79 0.76

1.53
1.45

CPU time Speedup

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 27 / 30

MJIT performance results
Optcarrot: Peak memory overhead relative to MRI v2

v2 MJIT MJIT-L OMR JRuby9k JRuby9k-D Graal
10-1

100

101

102

103
P
e
a
k
m
e
m
o
ry

1.41

10.67

17.68

1.16 1.16

Peak memory overhead

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 28 / 30

Recommendations to use GCC/LLVM for a JIT

My recommendations in order of importance:
I Don’t use MCJIT, ORC, or LIBGCCJIT
I Use a pre-compiled header (JIT code environment) in a memory FS
I Compile code in parallel with program interpretation
I Use a good strategy to choose byte code for JITting
I Minimize the environment if you don’t use PCH

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 29 / 30

MJIT status and future directions

The project is at an early development stage:
I Unstable, passes ‘make test’, can not pass ‘make check’ yet
I Doesn’t work on Windows
I At least one more year to mature

Need more optimizations:
I No inlining yet. The most important optimization!
I Different approaches to implement inlining:

F Node or RTL level
F Use C inlining (I’ll pursue this one)
F New GCC/LLVM extension (a new inline attribute) would be useful

Will RTL and MJIT be a part of MRI?
I It does not depend on me
I I am going to work in this direction
I Will be happy if even some project ideas will be used in future MRI

Vladimir Makarov (Red Hat) Towards Ruby3x3 Performance September 21, 2017 30 / 30

