A Faster CRuby interpreter with dynamically
specialized IR

Vladimir Makarov

RedHat

Sep 10, 2022

A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 1/1

Presentation outline

Project motivation and initial expectations
Dynamically specialized VM insns (IR)
Current state of the project

Microbenchmark performance comparison of

» the base interpreter

» the interpreter with specialized IR (SIR)

» YJIT and MJIT

» and early stage CRuby MIR JIT based on SIR

e Future plans

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized

Sep 10, 2022

2/1

The project motivation

@ MIR project to address shortcomings of MJIT
@ MIR is an universal light-weight JIT compiler
» already good for JITting static programming languages
» still a lot of work to do to make it good for dynamic programming
languages
* a generalized lazy basic block versioning based on dynamic code properties
* trace generation and optimization based on basic block cloning
* ultimate goal is meta-tracing MIR C compiler
*

more details in my blog post "Code specialization for the MIR lightweight JIT
compiler”

@ Introduction of YJIT was a major disruption
» need to use more pragmatic approach to use MIR in the current state
» CRuby VM insn specialization instead of one in MIR itself
@ Expectation register transfer language (RTL) with BB versioning
can achieve YJIT performance for some benchmarks

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 3/1

Code specialization

@ One Merriam-Webster definition of "specialization” — "design, train,

or fit for one particular purpose”

@ Code specialization is a common approach for faster code
generation
@ Specialized code already exists in CRuby,
» VM insns for calling methods with particular name like opt_plus

e Statically and dynamically specialized code

@ Speculatively specialized code and deoptimization

» the more dynamic language is the more (speculative) specialization you
need to be closer to static language performance

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022

4/1

Dynamically specialized CRuby insns

@ Dynamic specialization in a lazy way on VM insn BB level
» usually a lot of versions of executed BB exists
@ Specialization currently implemented:

» hybrid stack-RTL insn specialization
» type specialization based on lazy basic block versioning

*

Maxime Chevalier-Boisvert invention and the most important optimization
technique of YJIT

» different specialization based on profile info

*

*
*
*

type specialization based on profile info
specialized calls

specialized instance variable and attribute access
iterator specialization

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022

5/1

RTL

Stack insns | RTL insns

getlocal vl # push vl

getlocal v2 # push v2

opt_plus # pop vl and v2; push vi+v2 sir_plusvvv res, vl, v2 # assign v1+v2 to res
setlocal res # pop stack value and assign it to res

e RTL advantages
» less insns, less insn dispatch code
» less memory traffic

e RTL disadvantages
» longer insn, more time in operand decoding
» worse behaviour for working with values in stack ways (calls)

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 6/1

RTL (disjoint method frames)

stack growth —> stack growth —>
indexes: -3-2-1 123 indexes: -3-2 -1 321
local temporaries local unpredictable temporaries
variables P variables distance P
T T T T
ep sp ep sp

@ ep should be used for addressing local

@ only ep can be used for addressing variables and sp for stack values

local variables (negative offset)

and stack values (positive offset) > a lot of ifs on offset values — a big

performance impact on addressing

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 7/1

Hybrid stack-RTL insns

@ Hybrid stack-RTL insns to overcome pure RTL disadvantages:

plus
minus
mult
div
mod
or

and s s
sir- eq s v v
neq i i

It
gt
le
ge
aref
aset

@ s means value on stack

@ v means value in a local variable
@ i means immediate value

@ insns sir_aset..i and insns with suffixes sss, sii are absent

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 8/1

Type specialized insns

plus

minus

mult plus

div minus

mod mult

or div

and s s mod s s
- s . s
sir-i eq { v }{ v }{ v } sir_f eq { v }{ v }{ v }

neq i i neq i i

It It

gt gt

le le

ge ge

aref

aset

@ Fixnum (prefix sir_i) and FP (prefix sir_f) type specialized insns:

» Difference with non-type RTL insns: result can be also a local variable

» Otherwise, strict correspondence between type-specialized insns and non-type ones is for
safe deoptimization

@ Many type specialized insns are generated by lazy BB versions

» See numerous Maxime Maxime Chevalier-Boisvert presentations about BBV for details

@ Rest of type specialized insns are generated from profile info

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 9/1

Profile-based specialization

After profiling and further
BBV

sir_inspect_fixtype H sir_check_fixtype

Profiling Stage

sir_inspect_type

sir_inspect_flotype H sir_check_flotype |

@ Insns to inspect value types can not be deducted from BBV
» After profiling, if inspect insns are transformed into type guards, further
type specialization is done by BBV
@ Specialized insns for calls and instance variable access also can be

generated from profile info
ST T

lterators

sir_iter_start start_func
sir_cfunc_send => Lcont: sir_iter_body Lexit, block_bbv, cond_func
sir_iter_cont Lcont, arg_func
Lexit:

@ A lot of Ruby standard methods are implemented on C, accept iseq blocks, and
behave as iterators

@ Calling the interpreter from C code is very expensive

@ Such iterator method calls are changed by specialized insns avoiding the
interpreter exits and enters

» sir_iter_start start_finc, where start_func checks receiver type and setup block
args

» sir_iter body exit_label, block_bbv, cond_func, where cond_func finishes
iterator or calls block BBV

» sir_iter_cont cont_label, arg func, where arg_func updates block args and goto
to given label

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep- 10, 2022 11/1

Dynamic flow of specialized insns

@ Normal IR execution flow:

I VM stack insn iseq I

» Start execution of BB with a stub

il . .
comeie » Stub execution generates hybrid
| et l SIR stack-based RTL insns and
sir_make_bbv, sir_make_catch_bbv] _p.
type-specialized insns with profiling
lexeculion . nsns
|
AR BB iens. » Several executions of type-specialized
execution . . .
excuton ype-specialized BBV insns (invalid insns results in type- and profile-
(normal path) with profiling (self modifying insns) assumption) . | d .
specialized insns
foemn » Type- and profile-specialized insns are a
pe-and profle specialzed source of the MIR-based JIT
l @ Exception IR execution flow:

To future MIR-based JIT
» Switching to non-type specialized

stack-based RTL

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 12/1

Implementation and the current state

The code can be found in my github repository
https://github.com/vnmakarov/ruby

In the current state, SIR interpreter and MIR JIT are good only to run the
micro-benchmarks

Code for specialized IR generation and execution is about 3.5K lines of C
Generator of C code for MIR is about 2.5K lines of C

MIR-based JIT needs MIR library (from bbv branch) about 900KB of machine
code

Options to use the SIR interpreter: --sir, --sir-debug,
--sir-max-bb-versions=N

Option to use SIR interpreter and MIR JIT: --mirjit, -mirjit-debug

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 13/1

Benchmarking

@ Intel i7-9700K with 16GB memory under Linux FC 32

Base interpreter

Interpreter with SIR: —sir
YJIT: —yjit-call-threshold=1
MJIT: —jit-min-calls=1
SIR+MIR: —mirjit

vV vy vy VvYyy

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 14 /1

Micro-benchmarks (Wall time)

Wall time Speedup

7 = —
: e . SR
2 -)T
6 - T
= SIR+MIRJIT

«

N
il
)
459

w

N}

Speedup relative to the base interpreter

-

areay
aref
aset
Writg
bency,

Vladimir Makarov (RedHat)

Cajy

Mbrog

Const

450

381

358

.67

22'

@ 93% Geomean performance improvement for SIR

Consty
fannk
iV’Gaa
Wwrigg
Mbrop
"’el‘eor
Nbog,
"times
Whilg
Norm,
Pent

2.6

i

g
L
&
5
a

Sieve

t"ees
While

gy,

A Faster CRuby interpreter with dynamically specialized |

Micro-benchmarks (Wall time)

Wall time Speedup

7 e —
i FE - SR
8 -7
6 - T
SIR+MIR JIT

s

o

25 3

2 2 3
i H]

@

2

2 : 3
34 P

o &3

2 g

S

° o
23
k] 2

] =

o

S

3

3

o

4

12

-

@ SIR is faster YJIT on while benchmark because of RTL

Vladimir Makarov (RedHat)

.50

N\

581

5o

6

1.7

140

1

d'b’ack

A Faster CRuby interpreter with dynamically specialized |

Micro-benchmarks (Wall time)

Wall time Speedup

7 o
M . SR
-)T
6 - M)IT
mm SIR+MIR JIT
k]
4
gs 3
2 2 3
z 2 F A
8 s 3 5 g
4 3
84 P o]
P &3 3 all 3 9
2 z
e g : .
23 E Al = e i .
s 4 o il i %
[i foe N A 2 o
5 [g I
52 i °
9 -
o a8
g " e
) mz 2.«"
0
PV P LS EEYEL LS S LEE EL L3
g ° % 55 ° g8 55 ¢ s § 8558835885 ¢
o B S b S =
o Q § 8 2 5 g & & ¢ 3 3

@ SIR is faster YJIT on nested times benchmark because of iterator

specialization
Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 15/1

Micro-benchmarks (Wall time)

Wall time Speedup

7 o
H . SR
-)T
s - T
= SIR+MIR JIT
k]
4
25 3
2 2 3
£ 2 i
3 : .
2
Sa 2]
o &3 3
2 E
8 E g
$3 & 5
s ° i a
s = g PR
s 5 o 5 o
52 i °
] " 2
o a8
2 - e
n EQ 2
0
5P 3 £S5 B YEE FLEELPELEE LSS
g ° % 55 ° g8 55 ¢ s § 8558835885 ¢
o « > F~ -~
& < 5 S s 5 & & 7 & & 3 3

@ YJIT is faster SIR on call benchmark (an example when YJIT

specialization is better

Vladimir Makarov (RedHat)

A Faster CRuby interpreter with dynamically specialized

Sep 10, 2022

15/1

Micro-benchmarks (CPU time)

Geomean CPU time Speedup

4.0
3.54
> @ CPU times are practically the same
J o .
e e B as wall times
8201 »° " . .
| : @ MJIT Exception: GCC run in
o I parallel adds a lot of CPU time
0.54
0.0-
B NyT wyt grr WP W

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 16/1

Micro-benchmarks (Memory use)

Memory Use

144

124

10

N

o

Geomean Memory Use relative to the basic interpreter

consumption

1300
304
I 196
SR T wT o MR W
2

Vladimir Makarov (RedHat)

A Faster CRuby interpreter with dynamically specialized

@ Maximal resident memory size
@ YJIT has the biggest memory

Sep 10, 2022

17/1

OptCarrot

FPS

140

120 A

100

80

60

404

201

OptCarror Frames per second (3000 frames)

| +* | @ The faster interpreter provides a

l modest 39% improvement

0
o>
o

®°

o

®°
o

ml‘) I

Base SR NYT

Vladimir Makarov (RedHat)

it g+ W0

A Faster CRuby interpreter with dynamically specialized |

Optimized OptCarrot

OptCarror (--opt) Frames per second (3000 frames)\

l\ﬂ-" »*
2004
6“@ . .
) @ Huge method generation during
150 4 . .
i execution (analog aggressive
" 100 method inlining)
@ YJIT behaviour is the worst
504
1"1
o
gase %\\1 wyT LRI

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 19/1

The future plans

@ The faster interpreter is not ready yet
» bug fixing and more optimization work
* SIR is not APl and there are no compatibility problems to change it

» plans to finish it at the end of 2022
@ MIR-based JIT is at the very early stage of the development

» even more bug fixing and a lot of optimization work
» plans for finish implementation in the next year

@ Right now the faster interpreter and MIR-based JIT are more a
research project

» no commitment to submit it to CRuby
» commitment only to support MIR project itself

@ Adopting project ideas and/or code by Ruby developers is welcomed

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized Sep 10, 2022 20/1

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized |

