
A Faster CRuby interpreter with dynamically
specialized IR

Vladimir Makarov
RedHat

Sep 10, 2022

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 1 / 1



Presentation outline

Project motivation and initial expectations
Dynamically specialized VM insns (IR)
Current state of the project
Microbenchmark performance comparison of

I the base interpreter
I the interpreter with specialized IR (SIR)
I YJIT and MJIT
I and early stage CRuby MIR JIT based on SIR

Future plans

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 2 / 1



The project motivation
MIR project to address shortcomings of MJIT
MIR is an universal light-weight JIT compiler

I already good for JITting static programming languages
I still a lot of work to do to make it good for dynamic programming

languages
F a generalized lazy basic block versioning based on dynamic code properties
F trace generation and optimization based on basic block cloning
F ultimate goal is meta-tracing MIR C compiler
F more details in my blog post ”Code specialization for the MIR lightweight JIT

compiler”
Introduction of YJIT was a major disruption

I need to use more pragmatic approach to use MIR in the current state
I CRuby VM insn specialization instead of one in MIR itself

Expectation register transfer language (RTL) with BB versioning
can achieve YJIT performance for some benchmarks

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 3 / 1



Code specialization
One Merriam-Webster definition of ”specialization” – ”design, train,
or fit for one particular purpose”
Code specialization is a common approach for faster code
generation
Specialized code already exists in CRuby,

I VM insns for calling methods with particular name like opt plus

Statically and dynamically specialized code
Speculatively specialized code and deoptimization

I the more dynamic language is the more (speculative) specialization you
need to be closer to static language performance

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 4 / 1



Dynamically specialized CRuby insns
Dynamic specialization in a lazy way on VM insn BB level

I usually a lot of versions of executed BB exists
Specialization currently implemented:

I hybrid stack-RTL insn specialization
I type specialization based on lazy basic block versioning

F Maxime Chevalier-Boisvert invention and the most important optimization
technique of YJIT

I different specialization based on profile info
F type specialization based on profile info
F specialized calls
F specialized instance variable and attribute access
F iterator specialization

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 5 / 1



RTL

Stack insns RTL insns
getlocal v1 # push v1
getlocal v2 # push v2
opt plus # pop v1 and v2; push v1+v2 sir plusvvv res, v1, v2 # assign v1+v2 to res
setlocal res # pop stack value and assign it to res

RTL advantages
I less insns, less insn dispatch code
I less memory traffic

RTL disadvantages
I longer insn, more time in operand decoding
I worse behaviour for working with values in stack ways (calls)

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 6 / 1



RTL (disjoint method frames)

temporarieslocal
variables

ep sp

stack growth

1 2 3-3 -2 -1 indexes:

temporarieslocal
variables

ep sp

stack growth

3 2 1-3 -2 -1 indexes:

unpredictable
distance

only ep can be used for addressing
local variables (negative offset)
and stack values (positive offset)

ep should be used for addressing local
variables and sp for stack values

I a lot of ifs on offset values – a big
performance impact on addressing

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 7 / 1



Hybrid stack-RTL insns
Hybrid stack-RTL insns to overcome pure RTL disadvantages:

sir



plus
minus
mult
div

mod
or

and
eq
neq
lt
gt
le
ge

aref
aset


s

{
s
v
i

}{
s
v
i

}

s means value on stack
v means value in a local variable
i means immediate value
insns sir aset..i and insns with suffixes sss, sii are absent

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 8 / 1



Type specialized insns

sir i



plus
minus
mult
div

mod
or

and
eq
neq
lt
gt
le
ge

aref
aset



{
s
v

}{ s
v
i

}{
s
v
i

}
sir f



plus
minus
mult
div

mod
eq
neq
lt
gt
le
ge


{

s
v

}{ s
v
i

}{
s
v
i

}

Fixnum (prefix sir i) and FP (prefix sir f) type specialized insns:
I Difference with non-type RTL insns: result can be also a local variable
I Otherwise, strict correspondence between type-specialized insns and non-type ones is for

safe deoptimization

Many type specialized insns are generated by lazy BB versions
I See numerous Maxime Maxime Chevalier-Boisvert presentations about BBV for details

Rest of type specialized insns are generated from profile info
Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 9 / 1



Profile-based specialization

sir_inspect_type

sir_inspect_fixtype

sir_inspect_flotype

sir_check_fixtype

sir_check_flotype

Profiling Stage After profiling and further
BBV

nop

Insns to inspect value types can not be deducted from BBV
I After profiling, if inspect insns are transformed into type guards, further

type specialization is done by BBV
Specialized insns for calls and instance variable access also can be
generated from profile info

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 10 / 1



Iterators
sir_iter_start start_func

sir_cfunc_send => Lcont: sir_iter_body Lexit, block_bbv, cond_func
sir_iter_cont Lcont, arg_func

Lexit:

A lot of Ruby standard methods are implemented on C, accept iseq blocks, and
behave as iterators

Calling the interpreter from C code is very expensive
Such iterator method calls are changed by specialized insns avoiding the
interpreter exits and enters

I sir iter start start finc, where start func checks receiver type and setup block
args

I sir iter body exit label, block bbv, cond func, where cond func finishes
iterator or calls block BBV

I sir iter cont cont label, arg func, where arg func updates block args and goto
to given label

Iterators currently implemented only for fixnum times, range each, and array
each

I adding other iterators is easy and straightforward

Significantly improves iterator performance

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 11 / 1



Dynamic flow of specialized insns
VM stack insn iseq

iseq entry point stubs
(sir_make_bbv, sir_make_catch_bbv)

non-specialized hybrid
stack-RTL BBV insns

type-specialized BBV insns
with profiling (self modifying insns)

type- and profile-specialized
BBV insns

SIR

To future MIR-based JIT

compile

execution

execution

execution
(invalid

assumption)
execution

(normal path)

Normal IR execution flow:
I Start execution of BB with a stub
I Stub execution generates hybrid

stack-based RTL insns and
type-specialized insns with profiling
insns

I Several executions of type-specialized
insns results in type- and profile-
specialized insns

I Type- and profile-specialized insns are a
source of the MIR-based JIT

Exception IR execution flow:
I Switching to non-type specialized

stack-based RTL

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 12 / 1



Implementation and the current state
The code can be found in my github repository
https://github.com/vnmakarov/ruby

In the current state, SIR interpreter and MIR JIT are good only to run the
micro-benchmarks

Code for specialized IR generation and execution is about 3.5K lines of C

Generator of C code for MIR is about 2.5K lines of C

MIR-based JIT needs MIR library (from bbv branch) about 900KB of machine
code

Options to use the SIR interpreter: --sir, --sir-debug,
--sir-max-bb-versions=N

Option to use SIR interpreter and MIR JIT: --mirjit, -mirjit-debug
Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 13 / 1



Benchmarking

Intel i7-9700K with 16GB memory under Linux FC 32
I Base interpreter
I Interpreter with SIR: –sir
I YJIT: –yjit-call-threshold=1
I MJIT: –jit-min-calls=1
I SIR+MIR: –mirjit

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 14 / 1



Micro-benchmarks (Wall time)

93% Geomean performance improvement for SIR
Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 15 / 1



Micro-benchmarks (Wall time)

SIR is faster YJIT on while benchmark because of RTL
Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 15 / 1



Micro-benchmarks (Wall time)

SIR is faster YJIT on nested times benchmark because of iterator
specialization

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 15 / 1



Micro-benchmarks (Wall time)

YJIT is faster SIR on call benchmark (an example when YJIT
specialization is better)

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 15 / 1



Micro-benchmarks (CPU time)

CPU times are practically the same
as wall times
MJIT Exception: GCC run in
parallel adds a lot of CPU time

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 16 / 1



Micro-benchmarks (Memory use)

Maximal resident memory size
YJIT has the biggest memory
consumption

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 17 / 1



OptCarrot

The faster interpreter provides a
modest 39% improvement

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 18 / 1



Optimized OptCarrot

Huge method generation during
execution (analog aggressive
method inlining)
YJIT behaviour is the worst

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 19 / 1



The future plans
The faster interpreter is not ready yet

I bug fixing and more optimization work
F SIR is not API and there are no compatibility problems to change it

I plans to finish it at the end of 2022
MIR-based JIT is at the very early stage of the development

I even more bug fixing and a lot of optimization work
I plans for finish implementation in the next year

Right now the faster interpreter and MIR-based JIT are more a
research project

I no commitment to submit it to CRuby
I commitment only to support MIR project itself

Adopting project ideas and/or code by Ruby developers is welcomed

Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 20 / 1



Vladimir Makarov (RedHat) A Faster CRuby interpreter with dynamically specialized IR Sep 10, 2022 21 / 1


